Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.
A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
2.1×10 −2: Probability of being dealt a three of a kind in poker 2.3×10 −2: Gaussian distribution: probability of a value being more than 2 standard deviations from the mean on a specific side [17] 2.7×10 −2: Probability of winning any prize in the Powerball with one ticket in 2006 3.3×10 −2: Probability of a human giving birth to ...
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.