Ads
related to: neodymium magnet temperature limit calculator celsius
Search results
Results From The WOW.Com Content Network
In physics and materials science, the Curie temperature (T C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism is lost at a critical temperature. [1]
is the magnitude of the applied magnetic field (A/m), is absolute temperature , is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.
Neodymium-iron-boron magnets have high coercivity at room temperature, but as the temperature rises above 100 °C (212 °F), the coercivity decreases drastically until the Curie temperature (around 320 °C or 608 °F).
A neodymium magnet of a few tens of grams can lift a thousand times its own weight, and can snap together with enough force to break bones. These magnets are cheaper, lighter, and stronger than samarium–cobalt magnets. However, they are not superior in every aspect, as neodymium-based magnets lose their magnetism at lower temperatures [52 ...
The magnetocaloric effect can be quantified with the following equation: = ((,)) ((,)) where is the adiabatic change in temperature of the magnetic system around temperature T, H is the applied external magnetic field, C is the heat capacity of the working magnet (refrigerant) and M is the magnetization of the refrigerant.
A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction.
Ad
related to: neodymium magnet temperature limit calculator celsius