Search results
Results From The WOW.Com Content Network
Carbonation in concrete pores happens only at a relative humidity (RH) of 40-90%—when RH is higher than 90%, carbon dioxide cannot enter the concrete pores, and when RH is lower than 40%, CO 2 cannot be dissolved in water. [28] Pore structures in fresh concrete and air entrained in concrete
The carbon dioxide in the air reacts with the alkali in the cement and makes the pore water more acidic, thus lowering the pH. Carbon dioxide will start to carbonatate the cement in the concrete from the moment the object is made. This carbonatation process will start at the surface, then slowly moves deeper and deeper into the concrete.
When atmospheric carbon dioxide (CO 2), or carbonate ions (HCO − 3, CO 2− 3 dissolved in water) diffuse into concrete from its external surface, they react with calcium hydroxide (portlandite, Ca(OH) 2) and the pH of the concrete pore water progressively decreases from 13.5 – 12.5 to 8.5 (pH of water in equilibrium with calcite).
In reinforced concrete, the chemical reaction between carbon dioxide In the air and calcium hydroxide and hydrated calcium silicate in the concrete is known as neutralisation. The similar reaction in which calcium hydroxide from cement reacts with carbon dioxide and forms insoluble calcium carbonate is carbonatation .
This reaction is slow, because the partial pressure of carbon dioxide in the air is low (~ 0.4 millibar). The carbonation reaction requires that the dry cement be exposed to air, so the slaked lime is a non-hydraulic cement and cannot be used under water. This process is called the lime cycle.
For premium support please call: 800-290-4726 more ways to reach us
Earth's natural greenhouse effect makes life as we know it possible, and carbon dioxide in the atmosphere plays a significant role in providing for the relatively high temperature on Earth. The greenhouse effect is a process by which thermal radiation from a planetary atmosphere warms the planet's surface beyond the temperature it would have in ...
Research indicates that the production of each ton of sugar results in the emission of 241 kgs of CO2 equivalent into the atmosphere. Additionally, as highlighted by co2everything.com, a single ...