When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  3. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  4. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    It allows for the efficient computation of gradients through random variables, enabling the optimization of parametric probability models using stochastic gradient descent, and the variance reduction of estimators. It was developed in the 1980s in operations research, under the name of "pathwise gradients", or "stochastic gradients".

  5. Least mean squares filter - Wikipedia

    en.wikipedia.org/wiki/Least_mean_squares_filter

    If is chosen to be large, the amount with which the weights change depends heavily on the gradient estimate, and so the weights may change by a large value so that gradient which was negative at the first instant may now become positive. And at the second instant, the weight may change in the opposite direction by a large amount because of the ...

  6. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    In the stochastic setting, under the same assumption that the gradient is Lipschitz continuous and one uses a more restrictive version (requiring in addition that the sum of learning rates is infinite and the sum of squares of learning rates is finite) of diminishing learning rate scheme (see section "Stochastic gradient descent") and moreover ...

  7. Neighbourhood components analysis - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_components...

    Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. . Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbo

  8. Deep backward stochastic differential equation method

    en.wikipedia.org/wiki/Deep_backward_stochastic...

    Deep backward stochastic differential equation method is a numerical method that combines deep learning with Backward stochastic differential equation (BSDE). This method is particularly useful for solving high-dimensional problems in financial derivatives pricing and risk management .

  9. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    This includes, for example, early stopping, using a robust loss function, and discarding outliers. Implicit regularization is essentially ubiquitous in modern machine learning approaches, including stochastic gradient descent for training deep neural networks, and ensemble methods (such as random forests and gradient boosted trees).