When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    This means that for a given effect size, the significance level increases with the sample size. Unlike the t-test statistic, the effect size aims to estimate a population parameter and is not affected by the sample size. SMD values of 0.2 to 0.5 are considered small, 0.5 to 0.8 are considered medium, and greater than 0.8 are considered large. [23]

  3. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    From the t-test, the difference between the group means is 6-2=4. From the regression, the slope is also 4 indicating that a 1-unit change in drug dose (from 0 to 1) gives a 4-unit change in mean word recall (from 2 to 6). The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods ...

  4. Equivalence test - Wikipedia

    en.wikipedia.org/wiki/Equivalence_test

    A very simple equivalence testing approach is the ‘two one-sided t-tests’ (TOST) procedure. [11] In the TOST procedure an upper (Δ U) and lower (–Δ L) equivalence bound is specified based on the smallest effect size of interest (e.g., a positive or negative difference of d = 0.3).

  5. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    Additionally, the change to 0.005 would increase the likelihood of false negatives, whereby the effect being studied is real, but the test fails to show it. [ 63 ] In 2019, over 800 statisticians and scientists signed a message calling for the abandonment of the term "statistical significance" in science, [ 64 ] and the ASA published a further ...

  6. Cohen's h - Wikipedia

    en.wikipedia.org/wiki/Cohen's_h

    Researchers have used Cohen's h as follows.. Describe the differences in proportions using the rule of thumb criteria set out by Cohen. [1] Namely, h = 0.2 is a "small" difference, h = 0.5 is a "medium" difference, and h = 0.8 is a "large" difference.

  7. Welch's t-test - Wikipedia

    en.wikipedia.org/wiki/Welch's_t-test

    In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...

  8. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:

  9. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    For example, the test statistic might follow a Student's t distribution with known degrees of freedom, or a normal distribution with known mean and variance. Select a significance level (α), the maximum acceptable false positive rate. Common values are 5% and 1%. Compute from the observations the observed value t obs of the test statistic T.