When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sinusoidal plane-wave solutions of the electromagnetic wave ...

    en.wikipedia.org/wiki/Sinusoidal_plane-wave...

    Sinusoidal plane-wave solutions are particular solutions to the wave equation. The general solution of the electromagnetic wave equation in homogeneous, linear, time-independent media can be written as a linear superposition of plane-waves of different frequencies and polarizations .

  3. Sine and cosine transforms - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine_transforms

    By applying Euler's formula (= ⁡ + ⁡), it can be shown (for real-valued functions) that the Fourier transform's real component is the cosine transform (representing the even component of the original function) and the Fourier transform's imaginary component is the negative of the sine transform (representing the odd component of the ...

  4. Weinberg angle - Wikipedia

    en.wikipedia.org/wiki/Weinberg_angle

    The 2004 best estimate of sin 2 θ w, at ∆q = 91.2 GeV/c, in the MS scheme is 0.231 20 ± 0.000 15, which is an average over measurements made in different processes, at different detectors. Atomic parity violation experiments yield values for sin 2 θ w at smaller values of ∆ q , below 0.01 GeV/ c , but with much lower precision.

  5. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.

  6. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    m s −2 [L][T] −2: Spatial position Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r

  7. Envelope (waves) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(waves)

    A modulated wave resulting from adding two sine waves of identical amplitude and nearly identical wavelength and frequency. A common situation resulting in an envelope function in both space x and time t is the superposition of two waves of almost the same wavelength and frequency: [2]

  8. Mathieu function - Wikipedia

    en.wikipedia.org/wiki/Mathieu_function

    Since we may add π/2 to x to change the sign of q, it is a usual convention to set q ≥ 0. They were first introduced by Émile Léonard Mathieu, who encountered them while studying vibrating elliptical drumheads. [1] [2] [3] They have applications in many fields of the physical sciences, such as optics, quantum mechanics, and general relativity.

  9. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.