Search results
Results From The WOW.Com Content Network
The insertion loss is not such a problem for an unequal split of power: for instance -40 dB at port 3 has an insertion loss less than 0.2 dB at port 2. Isolation can be improved at the expense of insertion loss at both output ports by replacing the output resistors with T pads .
That resistance will consist of the sum of the radiation resistance R rad and the loss resistance R loss. If a current I is delivered to the terminals of an antenna, then a power of I 2 R rad will be radiated and a power of I 2 R loss will be lost as heat. Therefore, the efficiency of an antenna is equal to R rad / (R rad + R loss) .
German physicist Heinrich Hertz first demonstrated the existence of radio waves in 1887 using what we now know as a dipole antenna (with capacitative end-loading). On the other hand, Guglielmo Marconi empirically found that he could just ground the transmitter (or one side of a transmission line, if used) dispensing with one half of the antenna, thus realizing the vertical or monopole antenna.
The thrust-to-weight ratio is calculated by dividing the thrust (in SI units – in newtons) by the weight (in newtons) of the engine or vehicle.The weight (N) is calculated by multiplying the mass in kilograms (kg) by the acceleration due to gravity (m/s 2).
The largest use of this band is by Wi-Fi networks; the IEEE 802.11b and 802.11g standards use the 2.4 GHz section of the S band. These are the most widely used computer networks in the world, used globally in home and small office networks to link desktop and laptop computers, tablet computers, smartphones, smart TVs, printers, and smart speakers together and to a wireless router to connect ...
One definition of signal-to-noise ratio is the ratio of the power of a signal (meaningful input) to the power of background noise (meaningless or unwanted input): =, where P is average power.
Wavenumber, as used in spectroscopy and most chemistry fields, is defined as the number of wavelengths per unit distance, typically centimeters (cm −1): ~ =, where λ is the wavelength.
S represents the light source, while r represents the measured points. The lines represent the flux emanating from the sources and fluxes. The total number of flux lines depends on the strength of the light source and is constant with increasing distance, where a greater density of flux lines (lines per unit area) means a stronger energy field.