When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    That is, a function is Lipschitz continuous if there is a constant K such that the inequality ((), ()) (,) holds for any ,. [15] The Lipschitz condition occurs, for example, in the Picard–Lindelöf theorem concerning the solutions of ordinary differential equations.

  4. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    Every Lipschitz continuous map is uniformly continuous, and hence continuous. More generally, a set of functions with bounded Lipschitz constant forms an equicontinuous set. The Arzelà–Ascoli theorem implies that if { f n } is a uniformly bounded sequence of functions with bounded Lipschitz constant, then it has a convergent subsequence.

  5. Constant function - Wikipedia

    en.wikipedia.org/wiki/Constant_function

    The graph of the constant function y = c is a horizontal line in the plane that passes through the point (0, c). [2] In the context of a polynomial in one variable x, the constant function is called non-zero constant function because it is a polynomial of degree 0, and its general form is f(x) = c, where c is nonzero.

  6. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The converse does not hold, since the function :, is, as seen above, not uniformly continuous, but it is continuous and thus Cauchy continuous. In general, for functions defined on unbounded spaces like R {\displaystyle R} , uniform continuity is a rather strong condition.

  7. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    So let f be such arbitrary bounded continuous function. Now consider the function of a single variable g(x) := f(x, c). This will obviously be also bounded and continuous, and therefore by the portmanteau lemma for sequence {X n} converging in distribution to X, we will have that E[g(X n)] → E[g(X)].

  8. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ 0 —having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ 0.

  9. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/wiki/Continuous_or_discrete...

    In continuous-time dynamics, the variable time is treated as continuous, and the equation describing the evolution of some variable over time is a differential equation. [7] The instantaneous rate of change is a well-defined concept that takes the ratio of the change in the dependent variable to the independent variable at a specific instant.