Search results
Results From The WOW.Com Content Network
Schematic termscheme for Para- and Orthohelium with one electron in ground state 1s and one excited electron. The quantum mechanical description of the helium atom is of special interest, because it is the simplest multi-electron system and can be used to understand the concept of quantum entanglement.
In this model, liquid helium below the lambda point is viewed as containing a proportion of helium atoms in a ground state, which are superfluid and flow with exactly zero viscosity, and a proportion of helium atoms in an excited state, which behave more like an ordinary fluid. [101]
Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).
Helium is the smallest and the lightest noble gas and one of the most unreactive elements, so it was commonly considered that helium compounds cannot exist at all, or at least under normal conditions. [1] Helium's first ionization energy of 24.57 eV is the highest of any element. [2]
Any other configuration is an excited state. As an example, the ground state configuration of the sodium atom is 1s 2 2s 2 2p 6 3s 1, as deduced from the Aufbau principle (see below). The first excited state is obtained by promoting a 3s electron to the 3p subshell, to obtain the 1s 2 2s 2 2p 6 3p 1 configuration, abbreviated as the 3p level ...
Thus, in the helium atom, Hund's first rule correctly predicts that the 1s2s triplet state (3 S) is lower than the 1s2s singlet (1 S). Similarly for organic molecules, the same rule predicts that the first triplet state (denoted by T 1 in photochemistry) is lower than the first excited singlet state (S 1), which is generally correct.
For example, the table shows that the first pair of vertically adjacent atoms with different ground-state term symbols are V and Nb. The 6 D 1 ⁄ 2 ground state of Nb corresponds to an excited state of V 2112 cm −1 above the 4 F 3 ⁄ 2 ground state of V, which in turn corresponds to an excited state of Nb 1143 cm −1 above the Nb ground ...
The binding energies of the ground (n = 1) and first excited (n = 2) states are -7.6 K and -1.9 K respectively and, as the energy required for excitation is higher than the typical experimental temperature (1 K), the electron remains in the ground state, trapped several nanometres above the liquid surface. The first spectroscopic evidence for ...