Search results
Results From The WOW.Com Content Network
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is =.
Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.
The arc length, from the familiar geometry of a circle, is = The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ):
where A is the area of an epicycloid with the smaller circle of radius r and the larger circle of radius kr (), assuming the initial point lies on the larger circle. A = ( − 1 ) k + 3 8 π a 2 {\displaystyle A={\frac {(-1)^{k}+3}{8}}\pi a^{2}}
The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere. As with the formula for the area of a circle, any derivation of this formula inherently uses methods similar to calculus.
A circle of radius 5 centered at the origin has area 25 ... For a circle with slightly smaller radius, the area is nearly the same, but the circle contains only 69 ...
This property can also be used to easily derive the formula for the area of a circle, because as the number of sides approaches infinity, the regular polygon's area approaches the area of the inscribed circle of radius r = a.