Search results
Results From The WOW.Com Content Network
A double-strand break repair model refers to the various models of pathways that cells undertake to repair double strand-breaks (DSB). DSB repair is an important cellular process, as the accumulation of unrepaired DSB could lead to chromosomal rearrangements, tumorigenesis or even cell death. [ 1 ]
In either case the resulting 3’ single-stranded DNA (ssDNA) is bound by multiple molecules of RecA protein that facilitate "strand invasion," in which one strand of a homologous double-stranded DNA is displaced by the RecA-associated ssDNA. Strand invasion forms a joint DNA molecule called a D-loop. Resolution of the D-loop is thought to ...
Double-strand break repair models that act via homologous recombination. Homology-directed repair (HDR) is a mechanism in cells to repair double-strand DNA lesions. [1] The most common form of HDR is homologous recombination.
As DNA around the double-strand break is cut back, the single-stranded 3' overhangs being produced are coated with the RPA protein, which prevents the 3' overhangs from sticking to themselves. [52] A protein called Rad52 then binds each of the repeat sequences on either side of the break, and aligns them to enable the two complementary repeat ...
Singe-strand breaks are one of the most common forms of endogenous DNA damage. [9] Replication fork collapse at leading strand nicks generates resected single-ended double-strand breaks that can be repaired by homologous recombination. [9]
The main double-strand break repair pathways. Double-strand breaks, in which both strands in the double helix are severed, are particularly hazardous to the cell because they can lead to genome rearrangements. In fact, when a double-strand break is accompanied by a cross-linkage joining the two strands at the same point, neither strand can be ...
Microhomology-mediated end joining (MMEJ), also known as alternative nonhomologous end-joining (Alt-NHEJ) is one of the pathways for repairing double-strand breaks in DNA. As reviewed by McVey and Lee, [1] the foremost distinguishing property of MMEJ is the use of microhomologous sequences during the alignment of broken ends before joining, thereby resulting in deletions flanking the original ...
This displaced strand pops up to form a 3' overhang in the original double-stranded break duplex, which can then anneal to the opposite end of the original break through complementary base pairing. Thus DNA synthesis fills in gaps left over from annealing, and extends both ends of the still present single stranded DNA break, ligating all ...