Search results
Results From The WOW.Com Content Network
If a second-order differential equation has a characteristic equation with complex conjugate roots of the form r 1 = a + bi and r 2 = a − bi, then the general solution is accordingly y(x) = c 1 e (a + bi )x + c 2 e (a − bi )x. By Euler's formula, which states that e iθ = cos θ + i sin θ, this solution can be rewritten as follows:
In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.
The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor (possibly negative). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those ...
The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.
Characteristic equation may refer to: Characteristic equation (calculus), used to solve linear differential equations; Characteristic equation, the equation obtained by equating to zero the characteristic polynomial of a matrix or of a linear mapping; Method of characteristics, a technique for solving partial differential equations
The first order autoregressive model, = +, has a unit root when =.In this example, the characteristic equation is =.The root of the equation is =.. If the process has a unit root, then it is a non-stationary time series.
This characteristic equation is a nonlinear eigenproblem and there are many methods to compute the spectrum numerically. [7] [8] In some special situations it is possible to solve the characteristic equation explicitly. Consider, for example, the following DDE: = ().
The importance of the criterion is that the roots p of the characteristic equation of a linear system with negative real parts represent solutions e pt of the system that are stable . Thus the criterion provides a way to determine if the equations of motion of a linear system have only stable solutions, without solving the system directly.