Search results
Results From The WOW.Com Content Network
In statistics and uncertainty analysis, the Welch–Satterthwaite equation is used to calculate an approximation to the effective degrees of freedom of a linear combination of independent sample variances, also known as the pooled degrees of freedom, [1] [2] corresponding to the pooled variance.
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
More concretely, the number of degrees of freedom is the number of independent observations in a sample of data that are available to estimate a parameter of the population from which that sample is drawn. For example, if we have two observations, when calculating the mean we have two independent observations; however, when calculating the ...
The definitional equation of sample variance is = (¯), where the divisor is called the degrees of freedom (DF), the summation is called the sum of squares (SS), the result is called the mean square (MS) and the squared terms are deviations from the sample mean. ANOVA estimates 3 sample variances: a total variance based on all the observation ...
The difference between the two sample means, each denoted by X i, which appears in the numerator for all the two-sample testing approaches discussed above, is ¯ ¯ = The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small samples, a test of equality between the two population variances ...
Each observation is allocated to one cell of a two-dimensional array of cells (called a contingency table) according to the values of the two outcomes. If there are r rows and c columns in the table, the "theoretical frequency" for a cell, given the hypothesis of independence, is
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
Rather than comparing two sets, members are paired between samples so the difference between the members becomes the sample. Typically the mean of the differences is then compared to zero. The common example scenario for when a paired difference test is appropriate is when a single set of test subjects has something applied to them and the test ...