Search results
Results From The WOW.Com Content Network
While not derived as a Riemann sum, taking the average of the left and right Riemann sums is the trapezoidal rule and gives a trapezoidal sum. It is one of the simplest of a very general way of approximating integrals using weighted averages. This is followed in complexity by Simpson's rule and Newton–Cotes formulas.
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...
The harmonic number H n can be interpreted as a Riemann sum of the integral: + = (+). The n th harmonic number is about as large as the natural logarithm of n . The reason is that the sum is approximated by the integral ∫ 1 n 1 x d x , {\displaystyle \int _{1}^{n}{\frac {1}{x}}\,dx,} whose value is ln n .
One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.
The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number. The following table contains the decimal expansion of Im(z) for the first few nontrivial zeros:
Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.
The Poisson summation formula is also useful to bound the errors obtained when an integral is approximated by a (Riemann) sum. Consider an approximation of S ( 0 ) = ∫ − ∞ ∞ d x s ( x ) {\textstyle S(0)=\int _{-\infty }^{\infty }dx\,s(x)} as δ ∑ n = − ∞ ∞ s ( n δ ) {\textstyle \delta \sum _{n=-\infty }^{\infty }s(n\delta ...
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...