When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    While not derived as a Riemann sum, taking the average of the left and right Riemann sums is the trapezoidal rule and gives a trapezoidal sum. It is one of the simplest of a very general way of approximating integrals using weighted averages. This is followed in complexity by Simpson's rule and Newton–Cotes formulas.

  3. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.

  4. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...

  5. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    A converging sequence of Riemann sums. The number in the upper left is the total area of the blue rectangles. They converge to the definite integral of the function. We are describing the area of a rectangle, with the width times the height, and we are adding the areas together.

  6. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    The harmonic number H n can be interpreted as a Riemann sum of the integral: + = ⁡ (+). The n th harmonic number is about as large as the natural logarithm of n . The reason is that the sum is approximated by the integral ∫ 1 n 1 x d x , {\displaystyle \int _{1}^{n}{\frac {1}{x}}\,dx,} whose value is ln n .

  7. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series = = = + + +Leonhard Euler considered this series in the 1730s for real values of s, in conjunction with his solution to the Basel problem.

  8. File:Riemann sum convergence.svg - Wikipedia

    en.wikipedia.org/wiki/File:Riemann_sum...

    An example of Riemann sums for the integral ((+ (+ (+))) +), sampling each interval at right (blue), minimum (red), maximum (green), or left (yellow). Convergence of all four choices to 3.76 occurs as number of intervals increases from 2 to 10 (and implicitly, to ∞).

  9. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.