Search results
Results From The WOW.Com Content Network
The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .
The proof that P = NP implies EXP = NEXP uses "padding".. by definition, so it suffices to show .. Let L be a language in NEXP. Since L is in NEXP, there is a non-deterministic Turing machine M that decides L in time for some constant c.
EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds.
NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine. NP is the set of decision problems verifiable in polynomial time by a deterministic Turing machine. The first definition is the basis for the abbreviation NP; "nondeterministic, polynomial time". These two definitions are equivalent because the ...
An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
If solving a problem on a graph in a natural representation, such as an adjacency matrix, is NP-complete, then solving the same problem on a succinct circuit representation is NEXPTIME-complete, because the input is exponentially smaller (under some mild condition that the NP-completeness reduction is achieved by a "projection").
An example of an EXPSPACE-complete problem is the problem of recognizing whether two regular expressions represent different languages, where the expressions are limited to four operators: union, concatenation, the Kleene star (zero or more copies of an expression), and squaring (two copies of an expression). [1]