When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]

  3. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Nearly all organisms that break down glucose utilize glycolysis. [2] Glucose regulation and product use are the primary categories in which these pathways differ between organisms. [2] In some tissues and organisms, glycolysis is the sole method of energy production. [2] This pathway is common to both anaerobic and aerobic respiration. [1]

  4. Anaerobic glycolysis - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_glycolysis

    The anaerobic glycolysis (lactic acid) system is dominant from about 10–30 seconds during a maximal effort. It produces 2 ATP molecules per glucose molecule, [3] or about 5% of glucose's energy potential (38 ATP molecules). [4] [5] The speed at which ATP is produced is about 100 times that of oxidative phosphorylation. [1]

  5. Phosphofructokinase 1 - Wikipedia

    en.wikipedia.org/wiki/Phosphofructokinase_1

    PFK is able to regulate glycolysis through allosteric inhibition, and in this way, the cell can increase or decrease the rate of glycolysis in response to the cell's energy requirements. For example, a high ratio of ATP to ADP will inhibit PFK and glycolysis.

  6. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle.

  7. Metabolism - Wikipedia

    en.wikipedia.org/wiki/Metabolism

    Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...

  8. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    [10]: 570 An example is the reversed pathway of glycolysis, otherwise known as gluconeogenesis, which occurs in the liver and sometimes in the kidney to maintain proper glucose concentration in the blood and supply the brain and muscle tissues with adequate amount of glucose.

  9. Mitochondrial biogenesis - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_biogenesis

    Mitochondrial biogenesis increases metabolic enzymes for glycolysis, oxidative phosphorylation and ultimately a greater mitochondrial metabolic capacity. However, depending on the energy substrates available and the redox state of the cell, the cell may increase or decrease the number and size of mitochondria. [ 8 ]

  1. Related searches words that mean maintain or increase the amount of energy produced by glycolysis

    difference between glycolysis and glucosepyruvate glycolysis