Search results
Results From The WOW.Com Content Network
The magnitude, denoted by S, divided by the speed of light is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is S = power / area = rate of doing work / area = ΔF / Δt Δx / area , which is the speed of light, c = Δx / Δt, times ...
is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.
Foucault used this apparatus to measure the speed of light in air versus water, based on a suggestion by François Arago. [107] Today, using oscilloscopes with time resolutions of less than one nanosecond, the speed of light can be directly measured by timing the delay of a light pulse from a laser or an LED reflected from a mirror. This method ...
The phase velocity is the speed at which the crests or the phase of the wave moves, which may be different from the group velocity, the speed at which the pulse of light or the envelope of the wave moves. [1] Historically air at a standardized pressure and temperature has been common as a reference medium.
The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.
In this context, "speed of light" really refers to the speed supremum of information transmission or of the movement of ordinary (nonnegative mass) matter, locally, as in a classical vacuum. Thus, a more accurate description would refer to c 0 {\displaystyle c_{0}} rather than the speed of light per se.
These equations reduce to the classical Euler equations if the fluid three-velocity is much less than the speed of light, the pressure is much less than the energy density, and the latter is dominated by the rest mass density. To close this system, an equation of state, such as an ideal gas or a Fermi gas, is also added. [1]
ion speed of sound, the speed of the longitudinal waves resulting from the mass of the ions and the pressure of the electrons: = () , where is the adiabatic index Alfvén velocity , the speed of the waves resulting from the mass of the ions and the restoring force of the magnetic field: