Search results
Results From The WOW.Com Content Network
This module is subject to page protection.It is a highly visible module in use by a very large number of pages, or is substituted very frequently. Because vandalism or mistakes would affect many pages, and even trivial editing might cause substantial load on the servers, it is protected from editing.
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
An equivalent version which shuffles the array in the opposite direction (from lowest index to highest) is: -- To shuffle an array a of n elements (indices 0..n-1): for i from 0 to n−2 do j ← random integer such that i ≤ j ≤ n-1 exchange a[i] and a[j]
import random # this function checks whether or not the array is sorted def is_sorted (random_array): for i in range (1, len (random_array)): if random_array [i] < random_array [i-1]: return False return True # this function repeatedly shuffles the elements of the array until they are sorted def bogo_sort (random_array): while not is_sorted (random_array): random. shuffle (random_array) return ...
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...
A simple algorithm to generate a permutation of n items uniformly at random without retries, known as the Fisher–Yates shuffle, is to start with any permutation (for example, the identity permutation), and then go through the positions 0 through n − 2 (we use a convention where the first element has index 0, and the last element has index n − 1), and for each position i swap the element ...
Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers. This is generally not done in practice, however, and there is a well-known simple and efficient algorithm for shuffling: the Fisher–Yates shuffle .
In the bingo sort variant, items are sorted by repeatedly looking through the remaining items to find the greatest value and moving all items with that value to their final location. [2] Like counting sort , this is an efficient variant if there are many duplicate values: selection sort does one pass through the remaining items for each item ...