When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    the factor theorem shows that one has a factorization = (), where both factors have integer coefficients (the fact that Q has integer coefficients results from the above formula for the quotient of P(x) by /).

  3. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    This factorization is also unique up to the choice of a sign. For example, + + + = + + + is a factorization into content and primitive part. Gauss proved that the product of two primitive polynomials is also primitive (Gauss's lemma). This implies that a primitive polynomial is irreducible over the rationals if and only if it is irreducible ...

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  5. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    If A is invertible, then the factorization is unique if we require the diagonal elements of R to be positive. If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so the conjugate transpose Q † = Q − 1 {\displaystyle Q^{\dagger }=Q^{-1}} ).

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    An LU factorization refers to expression of A into product of two factors ... there is a closed (explicit) formula for the elements of L, D, ...

  7. Weierstrass factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_factorization...

    It is clear that any finite set {} of points in the complex plane has an associated polynomial = whose zeroes are precisely at the points of that set. The converse is a consequence of the fundamental theorem of algebra: any polynomial function () in the complex plane has a factorization = (), where a is a non-zero constant and {} is the set of zeroes of ().

  8. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:

  9. Euler's factorization method - Wikipedia

    en.wikipedia.org/wiki/Euler's_factorization_method

    Euler's factorization method is a technique for factoring a number by writing it as a sum of two squares in two different ways. For example the number 1000009 {\displaystyle 1000009} can be written as 1000 2 + 3 2 {\displaystyle 1000^{2}+3^{2}} or as 972 2 + 235 2 {\displaystyle 972^{2}+235^{2}} and Euler's method gives the factorization ...