Search results
Results From The WOW.Com Content Network
The singular value decomposition is very general in the sense that it can be applied to any matrix, whereas eigenvalue decomposition can only be applied to square diagonalizable matrices. Nevertheless, the two decompositions are related.
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
The smallest singular value of a matrix A is σ n (A). It has the following properties for a non-singular matrix A: The 2-norm of the inverse matrix (A −1) equals the inverse σ n −1 (A). [2]: Thm.3.3 The absolute values of all elements in the inverse matrix (A −1) are at most the inverse σ n −1 (A). [2]: Thm.3.3
The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum of its eigenvalues. [4] [5] [6] From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of its nonzero eigenvalues (the density of multivariate normal distribution will need this ...
If the linear transformation is expressed in the form of an n by n matrix A, then the eigenvalue equation for a linear transformation above can be rewritten as the matrix multiplication =, where the eigenvector v is an n by 1 matrix. For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it.
The matrix () is singular at an eigenvalue . Definition. In the discipline ... but most commonly it is a finite-dimensional, usually square, matrix. Definition: ...
It follows that the matrix () must be singular, and its determinant = must be zero. In other words, the eigenvalues of A are the roots of (), which is a monic polynomial in x of degree n if A is a n×n matrix.
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.