Search results
Results From The WOW.Com Content Network
Picture of a hydrogen atom using the Bohr model. In the Bohr model for atomic structure, put forward by Niels Bohr in 1913, electrons orbit a central nucleus under electrostatic attraction. The original derivation posited that electrons have orbital angular momentum in integer multiples of the reduced Planck constant, which successfully matched ...
Bohr's derivation of the Rydberg constant, as well as the concomitant agreement of Bohr's formula with experimentally observed spectral lines of the Lyman (n f =1), Balmer (n f =2), and Paschen (n f =3) series, and successful theoretical prediction of other lines not yet observed, was one reason that his model was immediately accepted. [30]: 34
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
The two ratios of three characteristic lengths: the classical electron radius r e, the reduced Compton wavelength of the electron ƛ e, and the Bohr radius a 0: r e = αƛ e = α 2 a 0. In quantum electrodynamics, α is directly related to the coupling constant determining the strength of the interaction between electrons and photons. [18]
Bohr calculated that a 1s orbital electron of a hydrogen atom orbiting at the Bohr radius of 0.0529 nm travels at nearly 1/137 the speed of light. [11] One can extend this to a larger element with an atomic number Z by using the expression v ≈ Z c 137 {\displaystyle v\approx {\frac {Zc}{137}}} for a 1s electron, where v is its radial velocity ...
The principal quantum number was first created for use in the semiclassical Bohr model of the atom, distinguishing between different energy levels. With the development of modern quantum mechanics, the simple Bohr model was replaced with a more complex theory of atomic orbitals. However, the modern theory still requires the principal quantum ...
The Bohr radius is the radius of the smallest allowed orbit. The energy of the electron is the sum of its kinetic and potential energies. The electron has kinetic energy by virtue of its actual motion around the nucleus, and potential energy because of its electromagnetic interaction with the nucleus. In the Bohr model this energy can be ...
Atomic units are chosen to reflect the properties of electrons in atoms, which is particularly clear in the classical Bohr model of the hydrogen atom for the bound electron in its ground state: Mass = 1 a.u. of mass; Charge = −1 a.u. of charge; Orbital radius = 1 a.u. of length; Orbital velocity = 1 a.u. of velocity [44]: 597