Search results
Results From The WOW.Com Content Network
DBSCAN does not require one to specify the number of clusters in the data a priori, as opposed to k-means. DBSCAN can find arbitrarily-shaped clusters. It can even find a cluster completely surrounded by (but not connected to) a different cluster.
In statistics and data mining, X-means clustering is a variation of k-means clustering that refines cluster assignments by repeatedly attempting subdivision, and keeping the best resulting splits, until a criterion such as the Akaike information criterion (AIC) or Bayesian information criterion (BIC) is reached. [5]
Global-K Means: Global K-means is an algorithm that begins with one cluster, and then divides in to multiple clusters based on the number required. [2] KMeans: An algorithm that requires two parameters 1. K (a number of clusters) 2. Set of data. [2] FW-KMeans: Used with vector space model. Uses the methodology of weight to decrease noise. [2]
Eventually, objects converge to local maxima of density. Similar to k-means clustering, these "density attractors" can serve as representatives for the data set, but mean-shift can detect arbitrary-shaped clusters similar to DBSCAN. Due to the expensive iterative procedure and density estimation, mean-shift is usually slower than DBSCAN or k-Means.
The illustration was prepared with the Mirkes Java applet. [51] k-means clustering result for the Iris flower data set and actual species visualized using ELKI. Cluster means are marked using larger, semi-transparent symbols. k-means clustering vs. EM clustering on an artificial dataset ("mouse").
Extracting clusters from this plot can be done manually by selecting ranges on the x-axis after visual inspection, by selecting a threshold on the y-axis (the result is then similar to a DBSCAN clustering result with the same and minPts parameters; here a value of 0.1 may yield good results), or by different algorithms that try to detect the ...
The k-medoids problem is a clustering problem similar to k-means. The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. [ 1 ] Both the k -means and k -medoids algorithms are partitional (breaking the dataset up into groups) and attempt to minimize the distance between points ...
Another method that modifies the k-means algorithm for automatically choosing the optimal number of clusters is the G-means algorithm. It was developed from the hypothesis that a subset of the data follows a Gaussian distribution. Thus, k is increased until each k-means center's data is Gaussian. This algorithm only requires the standard ...