Search results
Results From The WOW.Com Content Network
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
For example, translating the sentence "all skyscrapers are tall" as (() ()) is a logic translation that expresses an English language sentence in the logical system known as first-order logic. The aim of logic translations is usually to make the logical structure of natural language arguments explicit.
In mathematical logic, a sentence (or closed formula) [1] of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition , something that must be true or false.
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power.
The consequence of these features is that a mathematical text is generally not understandable without some prerequisite knowledge. For example, the sentence "a free module is a module that has a basis" is perfectly correct, although it appears only as a grammatically correct nonsense, when one does not know the definitions of basis, module, and free module.
First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all men are mortal", in first-order logic one can have expressions in the form "for all x , if x is a man, then x is mortal"; where "for all x" is a quantifier, x is a variable, and "...
The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).
Consider the formal sentence . For some natural number , =.. This is a single statement using existential quantification. It is roughly analogous to the informal sentence "Either =, or =, or =, or... and so on," but more precise, because it doesn't need us to infer the meaning of the phrase "and so on."