When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. File:A Byte of Python.pdf - Wikipedia

    en.wikipedia.org/wiki/File:A_Byte_of_Python.pdf

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  3. Move-to-front transform - Wikipedia

    en.wikipedia.org/wiki/Move-to-front_transform

    The move-to-front (MTF) transform is an encoding of data (typically a stream of bytes) designed to improve the performance of entropy encoding techniques of compression.When efficiently implemented, it is fast enough that its benefits usually justify including it as an extra step in data compression algorithm.

  4. Fast Walsh–Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Walsh–Hadamard...

    In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHT h) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order n = 2 m {\displaystyle n=2^{m}} would have a computational complexity of O( n 2 {\displaystyle n^{2}} ) .

  5. Transpose graph - Wikipedia

    en.wikipedia.org/wiki/Transpose_graph

    A skew-symmetric graph is a graph that is isomorphic to its own transpose graph, via a special kind of isomorphism that pairs up all of the vertices. The converse relation of a binary relation is the relation that reverses the ordering of each pair of related objects. If the relation is interpreted as a directed graph, this is the same thing as ...

  6. Davidon–Fletcher–Powell formula - Wikipedia

    en.wikipedia.org/wiki/Davidon–Fletcher–Powell...

    The Davidon–Fletcher–Powell formula (or DFP; named after William C. Davidon, Roger Fletcher, and Michael J. D. Powell) finds the solution to the secant equation that is closest to the current estimate and satisfies the curvature condition.

  7. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    Just like the quicksort algorithm, it has the expected time complexity of O(n log n), but may degenerate to O(n 2) in the worst case. Divide and conquer, a.k.a. merge hull — O(n log n) Another O(n log n) algorithm, published in 1977 by Preparata and Hong. This algorithm is also applicable to the three dimensional case.

  8. Reverse-delete algorithm - Wikipedia

    en.wikipedia.org/wiki/Reverse-delete_algorithm

    It is the reverse of Kruskal's algorithm, which is another greedy algorithm to find a minimum spanning tree. Kruskal’s algorithm starts with an empty graph and adds edges while the Reverse-Delete algorithm starts with the original graph and deletes edges from it. The algorithm works as follows: Start with graph G, which contains a list of ...

  9. Cepstrum - Wikipedia

    en.wikipedia.org/wiki/Cepstrum

    The independent variable of a cepstral graph is called the quefrency. [10] The quefrency is a measure of time, though not in the sense of a signal in the time domain. For example, if the sampling rate of an audio signal is 44100 Hz and there is a large peak in the cepstrum whose quefrency is 100 samples, the peak indicates the presence of a ...