When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The definition of matrix product requires that the entries belong to a semiring, and does not require multiplication of elements of the semiring to be commutative. In many applications, the matrix elements belong to a field, although the tropical semiring is also a common choice for graph shortest path problems. [ 15 ]

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Familiar properties of numbers extend to these operations on matrices: for example, addition is commutative, that is, the matrix sum does not depend on the order of the summands: A + B = B + A. [9] The transpose is compatible with addition and scalar multiplication, as expressed by (cA) T = c(A T) and (A + B) T = A T + B T. Finally, (A T) T = A.

  4. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For example, the determinant of the complex conjugate of a complex matrix (which is also the determinant of its conjugate transpose) is the complex conjugate of its determinant, and for integer matrices: the reduction modulo of the determinant of such a matrix is equal to the determinant of the matrix reduced modulo (the latter determinant ...

  5. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.

  6. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  7. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    Determinant definition has only multiplication, addition and subtraction operations. Obviously the determinant is integer if all matrix entries are integer. However actual computation of the determinant using the definition or Leibniz formula is impractical, as it requires O(n!) operations.

  8. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product is equivalent to a matrix multiplication, provided that is represented as a column vector and as a column vector (which makes a row vector). [ 2 ] [ 3 ] For instance, if m = 4 {\displaystyle m=4} and n = 3 , {\displaystyle n=3,} then [ 4 ]

  9. Quaternionic matrix - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_matrix

    The product of two quaternionic matrices A and B also follows the usual definition for matrix multiplication. For it to be defined, the number of columns of A must equal the number of rows of B . Then the entry in the i th row and j th column of the product is the dot product of the i th row of the first matrix with the j th column of the ...