Search results
Results From The WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
This page is a list of hyperboloid structures. These were first applied in architecture by Russian engineer Vladimir Shukhov (1853–1939). Shukhov built his first example as a water tower ( hyperbolic shell ) for the 1896 All-Russian Exposition .
An interesting example is the modular group = (): it acts on the tree given by the 1-skeleton of the associated tessellation of the hyperbolic plane and it has a finite index free subgroup (on two generators) of index 6 (for example the set of matrices in which reduce to the identity modulo 2 is such a group).
There are many such constructions or models of hyperbolic space, each suited to different aspects of its study. They are isometric to each other according to the previous paragraph, and in each case an explicit isometry can be explicitly given. Here is a list of the better-known models which are described in more detail in their namesake articles:
One has a hyperboloid of revolution if and only if =. Otherwise, the axes are uniquely defined (up to the exchange of the x-axis and the y-axis). There are two kinds of hyperboloids. In the first case (+1 in the right-hand side of the equation): a one-sheet hyperboloid, also called a hyperbolic hyperboloid.
There is a unique column in the Park Güell that is a hyperboloid. The famous Spanish engineer and architect Eduardo Torroja designed a thin-shell water tower in Fedala [5] and the roof of Hipódromo de la Zarzuela [6] in the form of hyperboloid of revolution. Le Corbusier and Félix Candela used hyperboloid structures . [citation needed]
A hyperboloid of two sheets A torus A helicoid. Simple examples. A simple example of a regular surface is given by the 2-sphere {(x, y, z) | x 2 + y 2 + z 2 = 1}; this surface can be covered by six Monge patches (two of each of the three types given above), taking h(u, v) = ± (1 − u 2 − v 2) 1/2.
In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...