Search results
Results From The WOW.Com Content Network
The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.
is a convex set. [2] The epigraphs of extended real-valued functions play a role in convex analysis that is analogous to the role played by graphs of real-valued function in real analysis. Specifically, the epigraph of an extended real-valued function provides geometric intuition that can be used to help formula or prove conjectures.
In convex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [,] = {}. [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the ...
The antiderivative of a function is the set of functions whose derivative is that function. The constant of integration follows from the fact that the derivative of a constant function is 0. Inverse hyperbolic functions over the complex domain are multiple-valued because hyperbolic functions are periodic along the imaginary axis. Over the reals ...
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
A set-valued function, also called a correspondence or set-valued relation, is a mathematical function that maps elements from one set, the domain of the function, to subsets of another set. [1] [2] Set-valued functions are used in a variety of mathematical fields, including optimization, control theory and game theory.
where p = 0.3275911, a 1 = 0.254829592, a 2 = −0.284496736, a 3 = 1.421413741, a 4 = −1.453152027, a 5 = 1.061405429 All of these approximations are valid for x ≥ 0 . To use these approximations for negative x , use the fact that erf x is an odd function, so erf x = −erf(− x ) .
The function f(x) (in blue) is approximated by a linear function (in red). In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: ().