Search results
Results From The WOW.Com Content Network
Microsoft SQL Server Analysis Services (SSAS [1]) is an online analytical processing (OLAP) and data mining tool in Microsoft SQL Server. SSAS is used as a tool by organizations to analyze and make sense of information possibly spread out across multiple databases, or in disparate tables or files.
Different text mining methods are used based on their suitability for a data set. Text mining is the process of extracting data from unstructured text and finding patterns or relations. Below is a list of text mining methodologies. Centroid-based Clustering: Unsupervised learning method. Clusters are determined based on data points. [1]
Before data mining algorithms can be used, a target data set must be assembled. As data mining can only uncover patterns actually present in the data, the target data set must be large enough to contain these patterns while remaining concise enough to be mined within an acceptable time limit. A common source for data is a data mart or data ...
Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms.
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...
Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text.It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources."
This kind of data redundancy due to the spatial correlation between sensor observations inspires the techniques for in-network data aggregation and mining. By measuring the spatial correlation between data sampled by different sensors, a wide class of specialized algorithms can be developed to develop more efficient spatial data mining algorithms.