Search results
Results From The WOW.Com Content Network
To estimate μ based on the first n observations, one can use the sample mean: T n = (X 1 + ... + X n)/n. This defines a sequence of estimators, indexed by the sample size n . From the properties of the normal distribution, we know the sampling distribution of this statistic: T n is itself normally distributed, with mean μ and variance σ 2 / n .
The sample mean is a Fisher consistent and unbiased estimate of the population mean, but not all Fisher consistent estimates are unbiased. Suppose we observe a sample from a uniform distribution on (0,θ) and we wish to estimate θ. The sample maximum is Fisher consistent, but downwardly biased.
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞. In practice, a limit evaluation is ...
This feature remains constant with increasing sample size; what changes is that the interval becomes smaller. In addition, 95% confidence intervals are also 83% prediction intervals: one (pre experimental) confidence interval has an 83% chance of covering any future experiment's mean. [3]
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data.
In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound.
The maximum spacing estimator is a consistent estimator in that it converges in probability to the true value of the parameter, θ 0, as the sample size increases to infinity. [2] The consistency of maximum spacing estimation holds under much more general conditions than for maximum likelihood estimators.