Ads
related to: complex number real part calculator algebra 4
Search results
Results From The WOW.Com Content Network
A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
That is, the real numbers are embedded in the quaternions. (More properly, the field of real numbers is isomorphic to a subset of the quaternions. The field of complex numbers is also isomorphic to three subsets of quaternions.) [22] A quaternion that equals its vector part is called a vector quaternion.
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit j satisfying =, where . A split-complex number has two real number components x and y , and is written z = x + y j . {\displaystyle z=x+yj.}
As another example, the complex number + is algebraic because it is a root of x 4 + 4. All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as π and e, are called transcendental numbers. The set of algebraic (complex) numbers is countably infinite and has measure ...
The imaginary unit i in the complex plane: Real numbers are conventionally drawn on the horizontal axis, and imaginary numbers on the vertical axis.. The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0.