When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [ 1 ]

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    For the one-versus-one approach, classification is done by a max-wins voting strategy, in which every classifier assigns the instance to one of the two classes, then the vote for the assigned class is increased by one vote, and finally the class with the most votes determines the instance classification. Directed acyclic graph SVM (DAGSVM) [32]

  4. One-class classification - Wikipedia

    en.wikipedia.org/wiki/One-class_classification

    In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.

  5. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. [1] LS-SVMs are a class of kernel-based learning methods.

  6. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]

  7. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.

  8. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    In machine learning, the kernel perceptron is a variant of the popular perceptron learning algorithm that can learn kernel machines, i.e. non-linear classifiers that employ a kernel function to compute the similarity of unseen samples to training samples. The algorithm was invented in 1964, [1] making it the first kernel classification learner. [2]

  9. Bernhard Schölkopf - Wikipedia

    en.wikipedia.org/wiki/Bernhard_Schölkopf

    Schölkopf developed SVM methods achieving world record performance on the MNIST pattern recognition benchmark at the time. [2] With the introduction of kernel PCA, Schölkopf and coauthors argued that SVMs are a special case of a much larger class of methods, and all algorithms that can be expressed in terms of dot products can be generalized to a nonlinear setting by means of what is known ...