Search results
Results From The WOW.Com Content Network
The order of reaction is a number which quantifies the degree to which the rate of a chemical reaction depends on concentrations of the reactants. [2] In other words, the order of reaction is the exponent to which the concentration of a particular reactant is raised. [2]
Zero order reaction. Zero-order process (statistics), a sequence of random variables, each independent of the previous ones; Zero order process (chemistry), a chemical reaction in which the rate of change of concentration is independent of the concentrations; Zeroth-order approximation, an approximation of a function by a constant
n th-order reaction (r = kC A n), where k is the reaction rate constant, C A is the concentration of species A, and n is the order of the reaction; isothermal conditions, or constant temperature (k is constant) single, irreversible reaction (ν A = −1) All reactant A is converted to products via chemical reaction; N A = C A V
The reaction changes from approximately first-order in substrate concentration at low concentrations to approximately zeroth order at high concentrations. At small values of the substrate concentration this approximates to a first-order dependence of the rate on the substrate concentration:
Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order, the Damköhler number for a convective flow system is defined as:
Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]
There is also zeroth order desorption which commonly occurs on thick molecular layers, in this case the desorption rate does not depend on the particle concentration. In the case of zeroth order, n = 0, the desorption will continue to increase with temperature until a sudden drop once all the molecules have been desorbed. [4]
The reaction order is 1 with respect to B and −1 with respect to A. Reactant A inhibits the reaction at all concentrations. The following reactions follow a Langmuir–Hinshelwood mechanism: [4] 2 CO + O 2 → 2 CO 2 on a platinum catalyst. CO + 2H 2 → CH 3 OH on a ZnO catalyst. C 2 H 4 + H 2 → C 2 H 6 on a copper catalyst. N 2 O + H 2 ...