When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    The order of reaction is a number which quantifies the degree to which the rate of a chemical reaction depends on concentrations of the reactants. [2] In other words, the order of reaction is the exponent to which the concentration of a particular reactant is raised. [2]

  3. Zero order - Wikipedia

    en.wikipedia.org/wiki/Zero_order

    Zero order reaction. Zero-order process (statistics), a sequence of random variables, each independent of the previous ones; Zero order process (chemistry), a chemical reaction in which the rate of change of concentration is independent of the concentrations; Zeroth-order approximation, an approximation of a function by a constant

  4. Continuous stirred-tank reactor - Wikipedia

    en.wikipedia.org/wiki/Continuous_stirred-tank...

    n th-order reaction (r = kC A n), where k is the reaction rate constant, C A is the concentration of species A, and n is the order of the reaction; isothermal conditions, or constant temperature (k is constant) single, irreversible reaction (ν A = −1) All reactant A is converted to products via chemical reaction; N A = C A V

  5. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    The reaction changes from approximately first-order in substrate concentration at low concentrations to approximately zeroth order at high concentrations. At small values of the substrate concentration this approximates to a first-order dependence of the rate on the substrate concentration:

  6. Damköhler numbers - Wikipedia

    en.wikipedia.org/wiki/Damköhler_numbers

    Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order, the Damköhler number for a convective flow system is defined as:

  7. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]

  8. Desorption - Wikipedia

    en.wikipedia.org/wiki/Desorption

    There is also zeroth order desorption which commonly occurs on thick molecular layers, in this case the desorption rate does not depend on the particle concentration. In the case of zeroth order, n = 0, the desorption will continue to increase with temperature until a sudden drop once all the molecules have been desorbed. [4]

  9. Reactions on surfaces - Wikipedia

    en.wikipedia.org/wiki/Reactions_on_surfaces

    The reaction order is 1 with respect to B and −1 with respect to A. Reactant A inhibits the reaction at all concentrations. The following reactions follow a Langmuir–Hinshelwood mechanism: [4] 2 CO + O 2 → 2 CO 2 on a platinum catalyst. CO + 2H 2 → CH 3 OH on a ZnO catalyst. C 2 H 4 + H 2 → C 2 H 6 on a copper catalyst. N 2 O + H 2 ...