Search results
Results From The WOW.Com Content Network
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
In that case, the specific volume would equal 0.4672 in 3 /lb. However, if the temperature is changed to 1160 °R, the specific volume of the super heated steam would have changed to 0.2765 in 3 /lb, which is a 59% overall change. Knowing the specific volumes of two or more substances allows one to find useful information for certain applications.
Where τ is the shear stress, S is the slope of the water, ρ is the density of water (1000 kg/m 3), g is acceleration due to gravity (9.8 m/s 2). [14] Shear stress can be used to compute the unit stream power using the formula = Where V is the velocity of the water in the stream. [14]
SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.
The Wobbe index is expressed in MJ/Nm³ (where 'Nm³' indicates'm³ in Normal conditions), or sometimes in BTU/scf.In the case of natural gas (molar mass 17 g/mol), the typical heating value is around 39 MJ/Nm³ (1,050 BTU/scf) and the specific gravity is approximately 0.59, giving a typical Wobbe index of 51 MJ/Nm³ (1,367 BTU/scf).
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .