Search results
Results From The WOW.Com Content Network
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.
Quantum orbital motion involves the quantum mechanical motion of rigid particles (such as electrons) about some other mass, or about themselves.In classical mechanics, an object's orbital motion is characterized by its orbital angular momentum (the angular momentum about the axis of rotation) and spin angular momentum, which is the object's angular momentum about its own center of mass.
This is highly analogous to the two-near, two far rule in water ice (see figure 1). Just as Pauling showed that the ice rule leads to an extensive entropy in water ice, so does the two-in, two-out rule in the spin ice systems – these exhibit the same residual entropy properties as water ice. Be that as it may, depending on the specific spin ...
While in ESR the coupling is obtained via the magnetic part of the EM wave with the electron magnetic moment, the ESDR is the coupling of the electric part with the spin and motion of the electrons. This mechanism has been proposed for controlling the spin of electrons in quantum dots and other mesoscopic systems. [15]
The spin magnetic moment is intrinsic for an electron. [3] It is = . Here S is the electron spin angular momentum. The spin g-factor is approximately two: . The factor of two indicates that the electron appears to be twice as effective in producing a magnetic moment as a charged body for which the mass and charge distributions are identical.
It has the same value for all particles of the same type, such as s = 1 / 2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written m s.
Electrons in metals also behave as if they were free. In reality the particles that are commonly termed electrons in metals and other solids are quasi-electrons—quasiparticles, which have the same electrical charge, spin, and magnetic moment as real electrons but might have a different mass. [134]
The contribution to the Seebeck coefficient that results from electrons' presence altering the systems spin entropy is given by α S,spin = ΔS spin /q = (k B /q)ln[(2s + 1)/(2s 0 +1)], where s 0 and s are net spins of the magnetic site in the absence and presence of the carrier, respectively. Many vibrational effects with electrons also ...