Search results
Results From The WOW.Com Content Network
Details of how clouds interact with shortwave and longwave radiation at different atmospheric heights [17]. Clouds have two major effects on the Earth's energy budget: they reflect shortwave radiation from sunlight back to space due to their high albedo, but the water vapor contained inside them also absorbs and re-emits the longwave radiation sent out by the Earth's surface as it is heated by ...
Thick clouds reflect a large amount of incoming solar radiation, translating to a high albedo. Thin clouds tend to transmit more solar radiation and, therefore, have a low albedo. Changes in cloud albedo caused by variations in cloud properties have a significant effect on global climate , having the ability to spiral into feedback loops.
Different types of clouds exhibit different reflectivity, theoretically ranging in albedo from a minimum of near 0 to a maximum approaching 0.8. "On any given day, about half of Earth is covered by clouds, which reflect more sunlight than land and water.
This phenomenon leaves the Sun's rays, and the clouds they illuminate, abundantly orange-to-red in colors, which one sees when looking at a sunset or sunrise. For the example of the Sun at zenith, in broad daylight, the sky is blue due to Rayleigh scattering, which also involves the diatomic gases N 2 and O 2.
The setting sun illuminates virga falling from clouds over a paddle boarder on Tempe Town Lake on Nov. 2, 2020. Wisps of precipitation falling from a cloud but evaporating before reaching the ground.
The clouds do not become that color; they are reflecting long and unscattered rays of sunlight, which are predominant at those hours. The effect is much like if a person were to shine a red spotlight on a white sheet. In combination with large, mature thunderheads this can produce blood-red clouds.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The current hypothesis for why the phenomenon occurs is that sunlight is reflecting off, or refracting through, tiny ice crystals above the crown of a cumulonimbus cloud. These ice crystals are aligned by the strong electric field effects around the cloud, [ 2 ] so the effect may appear as a tall (sometimes curved) streamer, pillar of light, or ...