Ad
related to: kinematic viscosity of butane tank at top of stove
Search results
Results From The WOW.Com Content Network
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.
(Top) 1 Material Safety Data Sheet. 2 Structure and properties. 3 Thermodynamic properties. 4 Vapor pressure of liquid. 5 Spectral data. ... Vapor pressure of n-butane.
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.
The Rayleigh number is defined as the product of the Grashof number (Gr), which describes the relationship between buoyancy and viscosity within a fluid, and the Prandtl number (Pr), which describes the relationship between momentum diffusivity and thermal diffusivity: Ra = Gr × Pr.
is the dynamic viscosity, i.e., a measure of the fluids' resistance to shearing flows L {\displaystyle L} is the characteristic length of the system ν = μ ρ {\displaystyle \nu ={\frac {\mu }{\rho }}} is the kinematic viscosity – it measures the ratio of dynamic viscosity to the density of the fluid