When.com Web Search

  1. Ad

    related to: kinematic viscosity of butane tank at top of stove

Search results

  1. Results From The WOW.Com Content Network
  2. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.

  3. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.

  4. Butane (data page) - Wikipedia

    en.wikipedia.org/wiki/Butane_(data_page)

    (Top) 1 Material Safety Data Sheet. 2 Structure and properties. 3 Thermodynamic properties. 4 Vapor pressure of liquid. 5 Spectral data. ... Vapor pressure of n-butane.

  5. Schmidt number - Wikipedia

    en.wikipedia.org/wiki/Schmidt_number

    The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).

  6. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.

  7. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.

  8. Rayleigh number - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_number

    The Rayleigh number is defined as the product of the Grashof number (Gr), which describes the relationship between buoyancy and viscosity within a fluid, and the Prandtl number (Pr), which describes the relationship between momentum diffusivity and thermal diffusivity: Ra = Gr × Pr.

  9. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    is the dynamic viscosity, i.e., a measure of the fluids' resistance to shearing flows L {\displaystyle L} is the characteristic length of the system ν = μ ρ {\displaystyle \nu ={\frac {\mu }{\rho }}} is the kinematic viscosity – it measures the ratio of dynamic viscosity to the density of the fluid