Search results
Results From The WOW.Com Content Network
After prompt fission neutron emission the residual fragments are still neutron rich and undergo a beta decay chain. The more neutron rich the fragment, the more energetic and faster the beta decay. In some cases the available energy in the beta decay is high enough to leave the residual nucleus in such a highly excited state that neutron ...
These are called prompt neutrons, and strike other nuclei and cause additional fissions within nanoseconds (an average time interval used by scientists in the Manhattan Project was one shake, or 10 ns). A small additional source of neutrons is the fission products.
In nuclear engineering, a delayed neutron is a neutron emitted after a nuclear fission event, by one of the fission products (or actually, a fission product daughter after beta decay), any time from a few milliseconds to a few minutes after the fission event. Neutrons born within 10 −14 seconds of the fission are termed "prompt neutrons".
The mean generation time, λ, is the average time from a neutron emission to a capture that results in fission. [16] The mean generation time is different from the prompt neutron lifetime because the mean generation time only includes neutron absorptions that lead to fission reactions (not other absorption reactions).
Given a total interaction cross section σ (typically measured in barns), the mean free path of a prompt neutron is = where n is the nuclear number density. Most interactions are scattering events, so that a given neutron obeys a random walk until it either escapes from the medium or causes a fission reaction.
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.
By definition, reactivity of zero dollars is just barely on the edge of criticality using both prompt and delayed neutrons. A reactivity less than zero dollars is subcritical; the power level will decrease exponentially and a sustained chain reaction will not occur. One dollar is defined as the threshold between delayed and prompt criticality.
The neutrons are usually classified in 6 delayed neutron groups. [4] The average neutron lifetime considering delayed neutrons is approximately 0.1 sec, which makes the chain reaction relatively easy to control over time. The remaining 993 prompt neutrons are released very quickly, approximately 1 μs after the fission event.