Search results
Results From The WOW.Com Content Network
Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system (,,) that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces , the ellipsoidal coordinate system is based on confocal quadrics .
An ellipsoidal model describes only the ellipsoid's geometry and a normal gravity field formula to go with it. Commonly an ellipsoidal model is part of a more encompassing geodetic datum. For example, the older ED-50 (European Datum 1950) is based on the Hayford or International Ellipsoid. WGS-84 is peculiar in that the same name is used for ...
For non-Earth bodies the terms planetographic latitude and planetocentric latitude are used instead. Ellipsoidal height (or ellipsoidal altitude), also known as geodetic height (or geodetic altitude), is the distance between the point of interest and the ellipsoid surface, evaluated along the ellipsoidal normal vector; it is defined as a signed ...
The set (u,β,λ) define the ellipsoidal-harmonic coordinates [19] or simply ellipsoidal coordinates [5]: §4.2.2 (although that term is also used to refer to geodetic coordinate). These coordinates are the natural choice in models of the gravity field for a rotating ellipsoidal body.
Ellipsoidal coordinates Elliptical distribution , in statistics Flattening , also called ellipticity and oblateness , is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid), respectively.
In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci F 1 {\displaystyle F_{1}} and F 2 {\displaystyle F_{2}} are generally taken to be fixed at − a {\displaystyle -a} and + a {\displaystyle +a} , respectively, on the x ...
Length of one degree (black), minute (blue) and second (red) of latitude and longitude in metric (upper half) and imperial units (lower half) at a given latitude (vertical axis) in WGS84. For example, the green arrows show that Donetsk (green circle) at 48°N has a Δ long of 74.63 km/° (1.244 km/min, 20.73 m/sec etc) and a Δ lat of 111.2 km ...
In geodetic surveying, the computation of the geodetic coordinates of points is commonly performed on a reference ellipsoid closely approximating the size and shape of the Earth in the area of the survey. The actual measurements made on the surface of the Earth with certain instruments are however referred to the geoid.