Search results
Results From The WOW.Com Content Network
In 1992, Bañados, Teitelboim, and Zanelli discovered the BTZ black hole solution (Bañados, Teitelboim & Zanelli 1992).This came as a surprise, because when the cosmological constant is zero, a vacuum solution of (2+1)-dimensional gravity is necessarily flat (the Weyl tensor vanishes in three dimensions, while the Ricci tensor vanishes due to the Einstein field equations, so the full Riemann ...
Here, saying that = is irrotational means that the vorticity tensor of the corresponding timelike congruence vanishes; thus, this Killing vector field is hypersurface orthogonal. The fact that our spacetime admits an irrotational timelike Killing vector field is in fact the defining characteristic of a static spacetime .
where is the Ricci curvature tensor and is the Ricci scalar curvature (obtained by taking successive traces of the Riemann tensor). The Ricci tensor vanishes in vacuum spacetimes (such as the Schwarzschild solution mentioned above), and hence there the Riemann tensor and the Weyl tensor coincide, as do their invariants.
Its chief disadvantage is that in those coordinates the metric depends on both the time and space coordinates. In Eddington–Finkelstein, as in Schwarzschild coordinates, the metric is independent of the "time" (either t in Schwarzschild, or u or v in the various Eddington–Finkelstein coordinates), but none of these cover the complete spacetime.
In 1916, Karl Schwarzschild found the Schwarzschild metrics, which are Ricci-flat Lorentzian manifolds of nonzero curvature. [3] Roy Kerr later found the Kerr metrics , a two-parameter family containing the Schwarzschild metrics as a special case. [ 4 ]
This statement is equivalent to the more usable condition that the Lie derivative of the tensor under the vector field vanishes: = on M. This has the consequence that, given any two points p and q on M , the coordinates of T in a coordinate system around p are equal to the coordinates of T in a coordinate system around q .
where (,) and (,) are two metric potentials dependent on Weyl's canonical coordinates {,}.The coordinate system {,,,} serves best for symmetries of Weyl's spacetime (with two Killing vector fields being = and =) and often acts like cylindrical coordinates, [2] but is incomplete when describing a black hole as {,} only cover the horizon and its exteriors.
Here, saying that = is irrotational means that the vorticity tensor of the corresponding timelike congruence vanishes; thus, this Killing vector field is hypersurface orthogonal. The fact that the spacetime admits an irrotational timelike Killing vector field is in fact the defining characteristic of a static spacetime .