Ads
related to: examples chemical products of the body worksheet middle schoolstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
This can be done in terms of the chemical elements present, or by molecular structure e.g., water, protein, fats (or lipids), hydroxyapatite (in bones), carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, connective tissue, muscle, bone, etc.
Much of chemistry research is focused on the synthesis and characterization of beneficial products, as well as the detection and removal of undesirable products. Synthetic chemists can be subdivided into research chemists who design new chemicals and pioneer new methods for synthesizing chemicals, as well as process chemists who scale up chemical production and make it safer, more ...
These chemical reactions produce waste products such as carbon dioxide, water, salts, urea and uric acid. Accumulation of these wastes beyond a level inside the body is harmful to the body. The excretory organs remove these wastes. This process of removal of metabolic waste from the body is known as excretion.
It is a very toxic substance to tissues and extremely soluble in water. Only one nitrogen atom is removed with it. A lot of water is needed for the excretion of ammonia, about 0.5 L of water is needed per 1 g of nitrogen to maintain ammonia levels in the excretory fluid below the level in body fluids to prevent toxicity.
An example of a coupled reaction is the phosphorylation of fructose-6-phosphate to form the intermediate fructose-1,6-bisphosphate by the enzyme phosphofructokinase accompanied by the hydrolysis of ATP in the pathway of glycolysis. The resulting chemical reaction within the metabolic pathway is highly thermodynamically favorable and, as a ...
In biochemistry, a metabolite is an intermediate or end product of metabolism. [1] The term is usually used for small molecules.Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, catalytic activity of their own (usually as a cofactor to an enzyme), defense, and interactions with other organisms (e.g. pigments, odorants, and ...