When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirac hole theory - Wikipedia

    en.wikipedia.org/wiki/Dirac_hole_theory

    Dirac hole theory is a theory in quantum mechanics, named after English theoretical physicist Paul Dirac, who introduced it in 1929. [1] The theory poses that the continuum of negative energy states, that are solutions to the Dirac equation, are filled with electrons, and the vacancies in this continuum (holes) are manifested as positrons with energy and momentum that are the negative of those ...

  3. Negative energy - Wikipedia

    en.wikipedia.org/wiki/Negative_energy

    The negative-energy particle then crosses the event horizon into the black hole, with the law of conservation of energy requiring that an equal amount of positive energy should escape. In the Penrose process , a body divides in two, with one half gaining negative energy and falling in, while the other half gains an equal amount of positive ...

  4. Thermodynamic system - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_system

    Properties of isolated, closed, and open thermodynamic systems in exchanging energy and matter. A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes.

  5. Dark energy - Wikipedia

    en.wikipedia.org/wiki/Dark_energy

    The "cosmological constant" is a constant term that can be added to Einstein field equations of general relativity.If considered as a "source term" in the field equation, it can be viewed as equivalent to the mass of empty space (which conceptually could be either positive or negative), or "vacuum energy".

  6. Quantum inequalities - Wikipedia

    en.wikipedia.org/wiki/Quantum_inequalities

    Quantum inequalities [1] are local constraints on the magnitude and extent of distributions of negative energy density in space-time. Initially conceived to clear up a long-standing problem in quantum field theory (namely, the potential for unconstrained negative energy density at a point), quantum inequalities have proven to have a diverse range of applications.

  7. Exergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_reaction

    The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]

  8. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.

  9. Zero-energy universe - Wikipedia

    en.wikipedia.org/wiki/Zero-energy_universe

    Gravitational energy from visible matter accounts for 26–37% of the observed total mass–energy density. [15] Therefore, to fit the concept of a "zero-energy universe" to the observed universe, other negative energy reservoirs besides gravity from baryonic matter are necessary. These reservoirs are frequently assumed to be dark matter. [16]