When.com Web Search

  1. Ad

    related to: centripetal acceleration examples physics questions and answers energy

Search results

  1. Results From The WOW.Com Content Network
  2. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    One common example involving centripetal force is the case in which a body moves with uniform speed along a circular path. The centripetal force is directed at right angles to the motion and also along the radius towards the centre of the circular path. [3] [4] The mathematical description was derived in 1659 by the Dutch physicist Christiaan ...

  3. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    The difference in angular speeds (or equivalently, in angular momenta) causes a difference in the centripetal force requirement; to offset this, the radial force must be altered with an inverse-cube force. Newton's theorem can be expressed equivalently in terms of potential energy, which is defined for central forces

  4. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    This acceleration is known as centripetal acceleration. For a path of radius r , when an angle θ is swept out, the distance traveled on the periphery of the orbit is s = rθ . Therefore, the speed of travel around the orbit is v = r d θ d t = r ω , {\displaystyle v=r{\frac {d\theta }{dt}}=r\omega ,} where the angular rate of rotation is ω .

  5. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]

  6. Reactive centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Reactive_centrifugal_force

    At low speeds, the spring provides the centripetal force to the shoes, which move to larger radius as the speed increases and the spring stretches under tension. At higher speeds, when the shoes can't move any further out to increase the spring tension, due to the outer drum, the drum provides some of the centripetal force that keeps the shoes ...

  7. Fictitious force - Wikipedia

    en.wikipedia.org/wiki/Fictitious_force

    This inward acceleration is called centripetal acceleration, it requires a centripetal force to maintain the circular motion. This force is exerted by the ground upon the wheels, in this case, from the friction between the wheels and the road. [ 21 ]

  8. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    are called the tangential acceleration and the normal or radial acceleration (or centripetal acceleration in circular motion, see also circular motion and centripetal force), respectively. Geometrical analysis of three-dimensional space curves, which explains tangent, (principal) normal and binormal, is described by the Frenet–Serret formulas ...

  9. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.