Ad
related to: volume of sphere problems
Search results
Results From The WOW.Com Content Network
Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.
The sphere packing problem is the three-dimensional version of a class of ball-packing problems in arbitrary dimensions. In two dimensions, the equivalent problem is packing circles on a plane. In one dimension it is packing line segments into a linear universe. [10]
In what is called the napkin ring problem, one shows by Cavalieri's principle that when a hole is drilled straight through the centre of a sphere where the remaining band has height , the volume of the remaining material surprisingly does not depend on the size of the sphere. The cross-section of the remaining ring is a plane annulus, whose ...
In the case of the finite sphere packing problem, these objects are restricted to equally-sized spheres. Such a packing of spheres determines a specific volume known as the convex hull of the packing, defined as the smallest convex set that includes all the spheres.
The volume of the Voronoi polyhedron of a sphere in a packing of equal spheres is at least the volume of a regular dodecahedron with inradius 1. McLaughlin's proof, [13] for which he received the 1999 Morgan Prize. A related problem, whose proof uses similar techniques to Hales' proof of the Kepler conjecture. Conjecture by L. Fejes Tóth in ...
An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.
The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.
Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three ...