Search results
Results From The WOW.Com Content Network
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum jumps supplanted the Bohr model's electron orbits.
Bohr developed the Bohr model of the atom, in which he proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level (or orbit) to another. Although the Bohr model has been supplanted by other models, its underlying principles remain valid.
His proposals were based on the then current Bohr model of the atom, in which the electron shells were orbits at a fixed distance from the nucleus. Bohr's original configurations would seem strange to a present-day chemist: sulfur was given as 2.4.4.6 instead of 1s 2 2s 2 2p 6 3s 2 3p 4 (2.8.6). Bohr used 4 and 6 following Alfred Werner's 1893 ...
The model's key success lay in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen by using the transitions of electrons between orbits. [24]: 276 While the Rydberg formula had been known experimentally, it did not gain a theoretical underpinning until the Bohr model was introduced. Not only did the Bohr model ...
But for Bohr the important result was the use of classical analogies and the Bohr atomic model to fix inconsistencies in Planck's derivation of the blackbody radiation formula. [9]: 118 Bohr used the word "correspondence" in italics in lectures and writing before calling it a correspondence principle. He viewed this as a correspondence between ...
This model, which became known as the Bohr–Sommerfeld model, allowed the orbits of the electron to be ellipses instead of circles, and introduced the concept of quantum degeneracy. The theory would have correctly explained the Zeeman effect, except for the issue of electron spin. Sommerfeld's model was much closer to the modern quantum ...
Niels Bohr publishes his 1913 paper of the Bohr model of the atom. [16] Ștefan Procopiu publishes a theoretical paper with the correct value of the electron's magnetic dipole moment μ B. [17] Niels Bohr obtains theoretically the value of the electron's magnetic dipole moment μ B as a consequence of his atom model