When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Slug (unit) - Wikipedia

    en.wikipedia.org/wiki/Slug_(unit)

    One slug is a mass equal to 32.17405 lb (14.59390 kg) based on standard gravity, the international foot, and the avoirdupois pound. [3] In other words, at the Earth's surface (in standard gravity), an object with a mass of 1 slug weighs approximately 32.17405 lbf or 143.1173 N. [ 4 ] [ 5 ]

  3. Poundal - Wikipedia

    en.wikipedia.org/wiki/Poundal

    Since a pound of force (pound force) accelerates a pound of mass at 32.174 049 ft/s 2 (9.80665 m/s 2; the acceleration of gravity, g), we can scale down the unit of force to compensate, giving us one that accelerates 1 pound mass at 1 ft/s 2 rather than at 32.174 049 ft/s 2; and that is the poundal, which is approximately 1 ⁄ 32 pound force.

  4. Foot–pound–second system of units - Wikipedia

    en.wikipedia.org/wiki/Foot–pound–second...

    Another variant of the FPS system uses both the pound-mass and the pound-force, but neither the slug nor the poundal. The resulting system is sometimes also known as the English engineering system . Despite its name, the system is based on United States customary units of measure; it is not used in England.

  5. Pound (force) - Wikipedia

    en.wikipedia.org/wiki/Pound_(force)

    In some contexts, the term "pound" is used almost exclusively to refer to the unit of force and not the unit of mass. In those applications, the preferred unit of mass is the slug, i.e. lbf⋅s 2 /ft. In other contexts, the unit "pound" refers to a unit of mass. The international standard symbol for the pound as a unit of mass is lb. [8]

  6. English Engineering Units - Wikipedia

    en.wikipedia.org/wiki/English_Engineering_Units

    Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).

  7. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.

  8. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    ≡ 1 ⁄ 7000 lb av ≡ 64.798 91 mg: grave: gv grave was the original name of the kilogram ≡ 1 kg hundredweight (long) long cwt or cwt ≡ 112 lb av = 50.802 345 44 kg: hundredweight (short); cental: sh cwt ≡ 100 lb av = 45.359 237 kg: hyl; metric slug: ≡ 1 kgf / 1 m/s 2 = 9.806 65 kg: kilogram (kilogramme) kg ≈ mass of the prototype ...

  9. Foot-pound (energy) - Wikipedia

    en.wikipedia.org/wiki/Foot-pound_(energy)

    The foot-pound force (symbol: ft⋅lbf, [1] ft⋅lb f, [2] or ft⋅lb [3]) is a unit of work or energy in the engineering and gravitational systems in United States customary and imperial units of measure. It is the energy transferred upon applying a force of one pound-force (lbf) through a linear displacement of one foot.