Search results
Results From The WOW.Com Content Network
A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
For example, consider the formulas for the area enclosed by a circle in two dimensions (=) and the volume enclosed by a sphere in three dimensions (=). One might guess that the volume enclosed by the sphere in four-dimensional space is a rational multiple of π r 4 {\displaystyle \pi r^{4}} , but the correct volume is π 2 2 r 4 {\displaystyle ...
An a × b rectangle can be packed with 1 × n strips if and only if n divides a or n divides b. [ 15 ] [ 16 ] de Bruijn's theorem : A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p , q , r (i.e., the box is a multiple of the brick.) [ 15 ]
In the 3rd century BC, Archimedes, using a method resembling Cavalieri's principle, [5] was able to find the volume of a sphere given the volumes of a cone and cylinder in his work The Method of Mechanical Theorems. In the 5th century AD, Zu Chongzhi and his son Zu Gengzhi established a similar method to find a sphere's volume. [2]
The rectangular cuboid (six rectangular faces), cube ... Hence the volume of a parallelepiped is the product of the base area and the height ...