When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Time-invariant_system

    If a time-invariant system is also linear, it is the subject of linear time-invariant theory (linear time-invariant) with direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas. Nonlinear time-invariant systems lack a comprehensive, governing theory.

  3. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...

  4. Time-variant system - Wikipedia

    en.wikipedia.org/wiki/Time-variant_system

    An example of this is the aging and wear of electronic components, which happens on a scale of years, and thus does not result in any behaviour qualitatively different from that observed in a time invariant system: day-to-day, they are effectively time invariant, though year to year, the parameters may change.

  5. Autonomous system (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Autonomous_system...

    When the variable is time, they are also called time-invariant systems. Many laws in physics, where the independent variable is usually assumed to be time, are expressed as autonomous systems because it is assumed the laws of nature which hold now are identical to those for any point in the past or future.

  6. Group delay and phase delay - Wikipedia

    en.wikipedia.org/wiki/Group_delay_and_phase_delay

    The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.

  7. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    A continuous time-invariant linear state-space model is controllable if and only if ⁡ [] =, where rank is the number of linearly independent rows in a matrix, and where n is the number of state variables.

  8. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    By definition they are time-invariant. By definition, they combine with time-invariant nominal values of their conjugate intensive functions of state, inverse temperature, pressure divided by temperature, and the chemical potentials divided by temperature, so as to exactly obey the laws of thermodynamics. [ 61 ]

  9. Observability - Wikipedia

    en.wikipedia.org/wiki/Observability

    For time-invariant linear systems in the state space representation, there are convenient tests to check whether a system is observable. Consider a SISO system with n {\displaystyle n} state variables (see state space for details about MIMO systems) given by