Search results
Results From The WOW.Com Content Network
Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium radioactively decays, usually by emitting an alpha particle.
Light elements such as helium-4 have close to a 1:1 neutron:proton ratio. The heaviest elements such as uranium have close to 1.5 neutrons per proton (e.g. 1.587 in uranium-238). No nuclide heavier than lead-208 is stable; these heavier elements have to shed mass to achieve stability, mostly by alpha decay.
As early as 1914, the possible existence of superheavy elements with atomic numbers well beyond that of uranium—then the heaviest known element—was suggested, when German physicist Richard Swinne proposed that superheavy elements around Z = 108 were a source of radiation in cosmic rays.
Uranium-235 (235 U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide. Uranium-235 has a half-life of 703.8 million years.
Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature. Uranium-235 has a half-life of 703.8 million years.
Elements beyond the actinides were first proposed to exist as early as 1895, when Danish chemist Hans Peter Jørgen Julius Thomsen predicted that thorium and uranium formed part of a 32-element period which would end at a chemically inactive element with atomic weight 292 (not far from the 294 for the only known isotope of oganesson).
Iran is enriching uranium to close to weapons-grade at a steady pace while discussions aimed at improving its cooperation with the U.N. nuclear watchdog are stalled, two confidential reports by ...
The uranium-235 nucleus can split in many ways, provided the atomic numbers add up to 92 and the mass numbers add up to 236 (uranium-235 plus the neutron that caused the split). The following equation shows one possible split, namely into strontium-95 (95 Sr), xenon-139 (139 Xe), and two neutrons (n), plus energy: [7]