Ad
related to: biocomputers examples biology and science problems in real life physics
Search results
Results From The WOW.Com Content Network
The development of biocomputers has been made possible by the expanding new science of nanobiotechnology. The term nanobiotechnology can be defined in multiple ways; in a more general sense, nanobiotechnology can be defined as any type of technology that uses both nano-scale materials (i.e. materials having characteristic dimensions of 1-100 ...
From molecular and cellular information processing networks to ecologies, economies and brains, life computes. Despite ubiquitous agreement on this fact going back as far as von Neumann automata and McCulloch–Pitts neural nets , we so far lack principles to understand rigorously how computation is done in living, or active, matter".
Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology. It relates to connectionism, social behavior, and emergence. Within computer science, bio-inspired computing
An organ-on-a-chip (OOC) is a multi-channel 3-D microfluidic cell culture, integrated circuit (chip) that simulates the activities, mechanics and physiological response of an entire organ or an organ system.
Synthetic biology, or breaking down life into its basic component parts to create enhanced biological systems, can be likened to writing software that enables life. Or genetic engineering on steroids.
Modelling biological systems is a significant task of systems biology and mathematical biology. [a] Computational systems biology [b] [1] aims to develop and use efficient algorithms, data structures, visualization and communication tools with the goal of computer modelling of biological systems.
The term human biocomputer, coined by Lilly, refers to the "hardware" of the human anatomy.This would include the brain, internal organs, and other human organ systems such as cardiovascular, digestive, endocrine, immune, integumentary, lymphatic, muscular, nervous, reproductive, respiratory, skeletal, and urinary systems.
The concept of wetware is an application of specific interest to the field of computer manufacturing. Moore's law, which states that the number of transistors which can be placed on a silicon chip is doubled roughly every two years, has acted as a goal for the industry for decades, but as the size of computers continues to decrease, the ability to meet this goal has become more difficult ...